Small-Area Estimation of County-Level Forest Attributes Using Ground Data and Remote Sensed Auxiliary Information

نویسندگان

  • Michael E. Goerndt
  • Vicente J. Monleon
  • Hailemariam Temesgen
چکیده

Small-area estimation (SAE) is a concept that has considerable potential for precise estimation of forest ecosystem attributes in partitioned forest populations. In this study, several estimators were compared as SAE techniques for 12 counties in the northern Oregon Coast range. The estimators that were compared consisted of three indirect estimators, multiple linear regression (MLR), gradient nearest neighbor imputation (GNN), and most similar neighbor imputation (MSN), and five composite estimators based on MLR, MSN, and GNN with county-level direct estimates. Forest attributes of interest were density (trees/ha), basal area (m/ha), cubic volume (m/ha), quadratic mean diameter (cm), and average height of 100 largest trees per ha. The sample consisted of 680 annual Forest Inventory Analysis plots, a spatially balanced sample across all conditions and ownerships. The auxiliary data consisted of 16 Landsat variables, a land cover classification, tree cover, and elevation. Overall, the composite estimators were superior when both precision and bias of estimation were considered. FOR. SCI. 59(5):536–548.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating Crop Area at County Level on the North China Plain with an Indirect Sampling of Segments and an Adapted Regression Estimator

Image classifications, including sub-pixel analysis, are often used to estimate crop acreage directly. However, this type of assessment often leads to a biased estimation, because commission and omission errors generally do not compensate for each other. Regression estimators combine remote sensing information with more accurate ground data on a field sample, and can result in more accurate and...

متن کامل

Comparison of Small Area Estimation Methods for Estimating Unemployment Rate

Extended Abstract. In recent years, needs for small area estimations have been greatly increased for large surveys particularly household surveys in Sta­ tistical Centre of Iran (SCI), because of the costs and respondent burden. The lack of suitable auxiliary variables between two decennial housing and popula­ tion census is a challenge for SCI in using these methods. In general, the...

متن کامل

High Spatial Resolution Remotely Sensed Data for Ecosystem Characterization

R sensed data have been employed for the characterization of ecologically important variables from local through global contexts. These data may be used to generate a wide range of estimates that are valuable to ecologists, including information on land cover, vegetation cover, habitat, forest structure, and forest function (Kerr and Ostrovsky 2003), and to track changes in these variables. Rec...

متن کامل

Spatially Explicit Large Area Biomass Estimation: Three Approaches Using Forest Inventory and Remotely Sensed Imagery in a GIS

Forest inventory data often provide the required base data to enable the largearea mapping of biomass over a range of scales. However, spatially explicit estimates ofabove-ground biomass (AGB) over large areas may be limited by the spatial extent of theforest inventory relative to the area of interest (i.e., inventories not spatially exhaustive), orby the omission of inventory attributes requir...

متن کامل

Estimation of local forest attributes, utilizing two-phase sampling and auxiliary data

This thesis examines the feasibility of a forest inventory method based on two-phase sampling in estimating forest attributes at the stand or substand levels for forest management purposes. The method is based on multi-source forest inventory combining auxiliary data consisting of remote sensing imagery or other geographic information and field measurements. Auxiliary data are utilized as first...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013